Metamath Proof Explorer


Theorem nebi

Description: Contraposition law for inequality. (Contributed by NM, 28-Dec-2008)

Ref Expression
Assertion nebi A=BC=DABCD

Proof

Step Hyp Ref Expression
1 id A=BC=DA=BC=D
2 1 necon3bid A=BC=DABCD
3 id ABCDABCD
4 3 necon4bid ABCDA=BC=D
5 2 4 impbii A=BC=DABCD