Description: Contraposition law for inequality. (Contributed by NM, 28-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nebi | ⊢ ( ( 𝐴 = 𝐵 ↔ 𝐶 = 𝐷 ) ↔ ( 𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( ( 𝐴 = 𝐵 ↔ 𝐶 = 𝐷 ) → ( 𝐴 = 𝐵 ↔ 𝐶 = 𝐷 ) ) | |
| 2 | 1 | necon3bid | ⊢ ( ( 𝐴 = 𝐵 ↔ 𝐶 = 𝐷 ) → ( 𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷 ) ) |
| 3 | id | ⊢ ( ( 𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷 ) → ( 𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷 ) ) | |
| 4 | 3 | necon4bid | ⊢ ( ( 𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷 ) → ( 𝐴 = 𝐵 ↔ 𝐶 = 𝐷 ) ) |
| 5 | 2 4 | impbii | ⊢ ( ( 𝐴 = 𝐵 ↔ 𝐶 = 𝐷 ) ↔ ( 𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷 ) ) |