Metamath Proof Explorer


Theorem 3r19.43

Description: Restricted quantifier version of 19.43 for a triple disjunction . (Contributed by AV, 2-Nov-2025)

Ref Expression
Assertion 3r19.43 x A φ ψ χ x A φ x A ψ x A χ

Proof

Step Hyp Ref Expression
1 df-3or φ ψ χ φ ψ χ
2 1 rexbii x A φ ψ χ x A φ ψ χ
3 r19.43 x A φ ψ χ x A φ ψ x A χ
4 r19.43 x A φ ψ x A φ x A ψ
5 4 orbi1i x A φ ψ x A χ x A φ x A ψ x A χ
6 df-3or x A φ x A ψ x A χ x A φ x A ψ x A χ
7 5 6 bitr4i x A φ ψ x A χ x A φ x A ψ x A χ
8 2 3 7 3bitri x A φ ψ χ x A φ x A ψ x A χ