Metamath Proof Explorer


Theorem 3t3e9

Description: 3 times 3 equals 9. (Contributed by NM, 11-May-2004)

Ref Expression
Assertion 3t3e9 33=9

Proof

Step Hyp Ref Expression
1 df-3 3=2+1
2 1 oveq2i 33=32+1
3 3cn 3
4 2cn 2
5 ax-1cn 1
6 3 4 5 adddii 32+1=32+31
7 3t2e6 32=6
8 3t1e3 31=3
9 7 8 oveq12i 32+31=6+3
10 6 9 eqtri 32+1=6+3
11 6p3e9 6+3=9
12 10 11 eqtri 32+1=9
13 2 12 eqtri 33=9