Metamath Proof Explorer


Theorem 3wlkdlem7

Description: Lemma 7 for 3wlkd . (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p P=⟨“ABCD”⟩
3wlkd.f F=⟨“JKL”⟩
3wlkd.s φAVBVCVDV
3wlkd.n φABACBCBDCD
3wlkd.e φABIJBCIKCDIL
Assertion 3wlkdlem7 φJVKVLV

Proof

Step Hyp Ref Expression
1 3wlkd.p P=⟨“ABCD”⟩
2 3wlkd.f F=⟨“JKL”⟩
3 3wlkd.s φAVBVCVDV
4 3wlkd.n φABACBCBDCD
5 3wlkd.e φABIJBCIKCDIL
6 1 2 3 4 5 3wlkdlem6 φAIJBIKCIL
7 elfvex AIJJV
8 elfvex BIKKV
9 elfvex CILLV
10 7 8 9 3anim123i AIJBIKCILJVKVLV
11 6 10 syl φJVKVLV