Metamath Proof Explorer


Theorem 4atexlempns

Description: Lemma for 4atexlem7 . (Contributed by NM, 23-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
4thatlemslps.l ˙=K
4thatlemslps.j ˙=joinK
4thatlemslps.a A=AtomsK
Assertion 4atexlempns φPS

Proof

Step Hyp Ref Expression
1 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
2 4thatlemslps.l ˙=K
3 4thatlemslps.j ˙=joinK
4 4thatlemslps.a A=AtomsK
5 1 4atexlemk φKHL
6 1 4atexlemp φPA
7 1 4atexlemq φQA
8 1 4atexlems φSA
9 1 4atexlemnslpq φ¬S˙P˙Q
10 2 3 4 4atlem0be KHLPAQASA¬S˙P˙QPS
11 5 6 7 8 9 10 syl131anc φPS