Metamath Proof Explorer


Theorem 4atexlem7

Description: Whenever there are at least 4 atoms under P .\/ Q (specifically, P , Q , r , and ( P .\/ Q ) ./\ W ), there are also at least 4 atoms under P .\/ S . This proves the statement in Lemma E of Crawley p. 114, last line, "...p \/ q/0 and hence p \/ s/0 contains at least four atoms..." Note that by cvlsupr2 , our ( P .\/ r ) = ( Q .\/ r ) is a shorter way to express r =/= P /\ r =/= Q /\ r .<_ ( P .\/ Q ) . With a longer proof, the condition -. S .<_ ( P .\/ Q ) could be eliminated (see 4atex ), although for some purposes this more restricted lemma may be adequate. (Contributed by NM, 25-Nov-2012)

Ref Expression
Hypotheses 4that.l ˙=K
4that.j ˙=joinK
4that.a A=AtomsK
4that.h H=LHypK
Assertion 4atexlem7 KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QrA¬r˙WP˙r=Q˙rzA¬z˙WP˙z=S˙z

Proof

Step Hyp Ref Expression
1 4that.l ˙=K
2 4that.j ˙=joinK
3 4that.a A=AtomsK
4 4that.h H=LHypK
5 simp11l KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QrA¬r˙WP˙r=Q˙rKHLWH
6 simp1r1 KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QPA¬P˙W
7 6 3ad2ant1 KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QrA¬r˙WP˙r=Q˙rPA¬P˙W
8 simp1r2 KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QQA¬Q˙W
9 8 3ad2ant1 KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QrA¬r˙WP˙r=Q˙rQA¬Q˙W
10 simp2 KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QrA¬r˙WP˙r=Q˙rrA
11 simp3l KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QrA¬r˙WP˙r=Q˙r¬r˙W
12 10 11 jca KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QrA¬r˙WP˙r=Q˙rrA¬r˙W
13 simp1r3 KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QSA
14 13 3ad2ant1 KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QrA¬r˙WP˙r=Q˙rSA
15 simp3r KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QrA¬r˙WP˙r=Q˙rP˙r=Q˙r
16 simp12 KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QrA¬r˙WP˙r=Q˙rPQ
17 simp13 KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QrA¬r˙WP˙r=Q˙r¬S˙P˙Q
18 eqid meetK=meetK
19 1 2 18 3 4 4atexlemex6 KHLWHPA¬P˙WQA¬Q˙WrA¬r˙WSAP˙r=Q˙rPQ¬S˙P˙QzA¬z˙WP˙z=S˙z
20 5 7 9 12 14 15 16 17 19 syl323anc KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QrA¬r˙WP˙r=Q˙rzA¬z˙WP˙z=S˙z
21 20 rexlimdv3a KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QrA¬r˙WP˙r=Q˙rzA¬z˙WP˙z=S˙z
22 21 3exp KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QrA¬r˙WP˙r=Q˙rzA¬z˙WP˙z=S˙z
23 22 3impd KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QrA¬r˙WP˙r=Q˙rzA¬z˙WP˙z=S˙z
24 23 3impia KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QrA¬r˙WP˙r=Q˙rzA¬z˙WP˙z=S˙z