Step |
Hyp |
Ref |
Expression |
1 |
|
4thatleme.l |
|
2 |
|
4thatleme.j |
|
3 |
|
4thatleme.m |
|
4 |
|
4thatleme.a |
|
5 |
|
4thatleme.h |
|
6 |
|
simp11l |
|
7 |
|
simp11 |
|
8 |
|
simp12 |
|
9 |
|
simp13l |
|
10 |
|
simp32 |
|
11 |
1 2 3 4 5
|
lhpat |
|
12 |
7 8 9 10 11
|
syl112anc |
|
13 |
|
simp2r |
|
14 |
|
simp12l |
|
15 |
|
simp33 |
|
16 |
1 2 4
|
atnlej1 |
|
17 |
6 13 14 9 15 16
|
syl131anc |
|
18 |
17
|
necomd |
|
19 |
1 2 3 4 5
|
lhpat |
|
20 |
7 8 13 18 19
|
syl112anc |
|
21 |
2 4
|
hlsupr2 |
|
22 |
6 12 20 21
|
syl3anc |
|
23 |
|
simp111 |
|
24 |
|
simp112 |
|
25 |
|
simp113 |
|
26 |
|
simp12r |
|
27 |
|
simp2ll |
|
28 |
27
|
3ad2ant1 |
|
29 |
|
simp2lr |
|
30 |
29
|
3ad2ant1 |
|
31 |
|
simp131 |
|
32 |
28 30 31
|
3jca |
|
33 |
|
3simpc |
|
34 |
|
simp132 |
|
35 |
|
simp133 |
|
36 |
|
biid |
|
37 |
|
eqid |
|
38 |
|
eqid |
|
39 |
|
eqid |
|
40 |
|
eqid |
|
41 |
36 1 2 3 4 5 37 38 39 40
|
4atexlemex4 |
|
42 |
36 1 2 3 4 5 37 38 39
|
4atexlemex2 |
|
43 |
41 42
|
pm2.61dane |
|
44 |
23 24 25 26 32 33 34 35 43
|
syl332anc |
|
45 |
44
|
rexlimdv3a |
|
46 |
22 45
|
mpd |
|