| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4thatleme.l |
|- .<_ = ( le ` K ) |
| 2 |
|
4thatleme.j |
|- .\/ = ( join ` K ) |
| 3 |
|
4thatleme.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
4thatleme.a |
|- A = ( Atoms ` K ) |
| 5 |
|
4thatleme.h |
|- H = ( LHyp ` K ) |
| 6 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> K e. HL ) |
| 7 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 8 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 9 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> Q e. A ) |
| 10 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> P =/= Q ) |
| 11 |
1 2 3 4 5
|
lhpat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) -> ( ( P .\/ Q ) ./\ W ) e. A ) |
| 12 |
7 8 9 10 11
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ W ) e. A ) |
| 13 |
|
simp2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> S e. A ) |
| 14 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> P e. A ) |
| 15 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
| 16 |
1 2 4
|
atnlej1 |
|- ( ( K e. HL /\ ( S e. A /\ P e. A /\ Q e. A ) /\ -. S .<_ ( P .\/ Q ) ) -> S =/= P ) |
| 17 |
6 13 14 9 15 16
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> S =/= P ) |
| 18 |
17
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> P =/= S ) |
| 19 |
1 2 3 4 5
|
lhpat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( S e. A /\ P =/= S ) ) -> ( ( P .\/ S ) ./\ W ) e. A ) |
| 20 |
7 8 13 18 19
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ S ) ./\ W ) e. A ) |
| 21 |
2 4
|
hlsupr2 |
|- ( ( K e. HL /\ ( ( P .\/ Q ) ./\ W ) e. A /\ ( ( P .\/ S ) ./\ W ) e. A ) -> E. t e. A ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) |
| 22 |
6 12 20 21
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> E. t e. A ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) |
| 23 |
|
simp111 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) /\ t e. A /\ ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) -> ( K e. HL /\ W e. H ) ) |
| 24 |
|
simp112 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) /\ t e. A /\ ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 25 |
|
simp113 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) /\ t e. A /\ ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
| 26 |
|
simp12r |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) /\ t e. A /\ ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) -> S e. A ) |
| 27 |
|
simp2ll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> R e. A ) |
| 28 |
27
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) /\ t e. A /\ ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) -> R e. A ) |
| 29 |
|
simp2lr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> -. R .<_ W ) |
| 30 |
29
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) /\ t e. A /\ ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) -> -. R .<_ W ) |
| 31 |
|
simp131 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) /\ t e. A /\ ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) -> ( P .\/ R ) = ( Q .\/ R ) ) |
| 32 |
28 30 31
|
3jca |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) /\ t e. A /\ ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) -> ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) ) |
| 33 |
|
3simpc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) /\ t e. A /\ ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) -> ( t e. A /\ ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) ) |
| 34 |
|
simp132 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) /\ t e. A /\ ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) -> P =/= Q ) |
| 35 |
|
simp133 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) /\ t e. A /\ ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) -> -. S .<_ ( P .\/ Q ) ) |
| 36 |
|
biid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( t e. A /\ ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) <-> ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( t e. A /\ ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) ) |
| 37 |
|
eqid |
|- ( ( P .\/ Q ) ./\ W ) = ( ( P .\/ Q ) ./\ W ) |
| 38 |
|
eqid |
|- ( ( P .\/ S ) ./\ W ) = ( ( P .\/ S ) ./\ W ) |
| 39 |
|
eqid |
|- ( ( Q .\/ t ) ./\ ( P .\/ S ) ) = ( ( Q .\/ t ) ./\ ( P .\/ S ) ) |
| 40 |
|
eqid |
|- ( ( R .\/ t ) ./\ ( P .\/ S ) ) = ( ( R .\/ t ) ./\ ( P .\/ S ) ) |
| 41 |
36 1 2 3 4 5 37 38 39 40
|
4atexlemex4 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( t e. A /\ ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) /\ ( ( Q .\/ t ) ./\ ( P .\/ S ) ) = S ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) |
| 42 |
36 1 2 3 4 5 37 38 39
|
4atexlemex2 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( t e. A /\ ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) /\ ( ( Q .\/ t ) ./\ ( P .\/ S ) ) =/= S ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) |
| 43 |
41 42
|
pm2.61dane |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( t e. A /\ ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) |
| 44 |
23 24 25 26 32 33 34 35 43
|
syl332anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) /\ t e. A /\ ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) |
| 45 |
44
|
rexlimdv3a |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( E. t e. A ( ( ( P .\/ Q ) ./\ W ) .\/ t ) = ( ( ( P .\/ S ) ./\ W ) .\/ t ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) ) |
| 46 |
22 45
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ S e. A ) /\ ( ( P .\/ R ) = ( Q .\/ R ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) |