| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4that.l |
|- .<_ = ( le ` K ) |
| 2 |
|
4that.j |
|- .\/ = ( join ` K ) |
| 3 |
|
4that.a |
|- A = ( Atoms ` K ) |
| 4 |
|
4that.h |
|- H = ( LHyp ` K ) |
| 5 |
|
simp11l |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 6 |
|
simp1r1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 7 |
6
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 8 |
|
simp1r2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
| 9 |
8
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
| 10 |
|
simp2 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> r e. A ) |
| 11 |
|
simp3l |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> -. r .<_ W ) |
| 12 |
10 11
|
jca |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> ( r e. A /\ -. r .<_ W ) ) |
| 13 |
|
simp1r3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) -> S e. A ) |
| 14 |
13
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> S e. A ) |
| 15 |
|
simp3r |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> ( P .\/ r ) = ( Q .\/ r ) ) |
| 16 |
|
simp12 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> P =/= Q ) |
| 17 |
|
simp13 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
| 18 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 19 |
1 2 18 3 4
|
4atexlemex6 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ S e. A ) /\ ( ( P .\/ r ) = ( Q .\/ r ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) |
| 20 |
5 7 9 12 14 15 16 17 19
|
syl323anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) |
| 21 |
20
|
rexlimdv3a |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) -> ( E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) ) |
| 22 |
21
|
3exp |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) -> ( P =/= Q -> ( -. S .<_ ( P .\/ Q ) -> ( E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) ) ) ) |
| 23 |
22
|
3impd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) -> ( ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) ) |
| 24 |
23
|
3impia |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) |