| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4thatleme.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
4thatleme.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
4thatleme.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
4thatleme.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
4thatleme.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ HL ) |
| 7 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 8 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 9 |
|
simp13l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ∈ 𝐴 ) |
| 10 |
|
simp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≠ 𝑄 ) |
| 11 |
1 2 3 4 5
|
lhpat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ 𝐴 ) |
| 12 |
7 8 9 10 11
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ 𝐴 ) |
| 13 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑆 ∈ 𝐴 ) |
| 14 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ∈ 𝐴 ) |
| 15 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 16 |
1 2 4
|
atnlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑆 ≠ 𝑃 ) |
| 17 |
6 13 14 9 15 16
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑆 ≠ 𝑃 ) |
| 18 |
17
|
necomd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≠ 𝑆 ) |
| 19 |
1 2 3 4 5
|
lhpat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑃 ≠ 𝑆 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∈ 𝐴 ) |
| 20 |
7 8 13 18 19
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∈ 𝐴 ) |
| 21 |
2 4
|
hlsupr2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ 𝐴 ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∈ 𝐴 ) → ∃ 𝑡 ∈ 𝐴 ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) |
| 22 |
6 12 20 21
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ∃ 𝑡 ∈ 𝐴 ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) |
| 23 |
|
simp111 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 24 |
|
simp112 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 25 |
|
simp113 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
| 26 |
|
simp12r |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) → 𝑆 ∈ 𝐴 ) |
| 27 |
|
simp2ll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑅 ∈ 𝐴 ) |
| 28 |
27
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) → 𝑅 ∈ 𝐴 ) |
| 29 |
|
simp2lr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑅 ≤ 𝑊 ) |
| 30 |
29
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) → ¬ 𝑅 ≤ 𝑊 ) |
| 31 |
|
simp131 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) |
| 32 |
28 30 31
|
3jca |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) |
| 33 |
|
3simpc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) → ( 𝑡 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) ) |
| 34 |
|
simp132 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) → 𝑃 ≠ 𝑄 ) |
| 35 |
|
simp133 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) → ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 36 |
|
biid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( 𝑡 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ↔ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( 𝑡 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 37 |
|
eqid |
⊢ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
| 38 |
|
eqid |
⊢ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) |
| 39 |
|
eqid |
⊢ ( ( 𝑄 ∨ 𝑡 ) ∧ ( 𝑃 ∨ 𝑆 ) ) = ( ( 𝑄 ∨ 𝑡 ) ∧ ( 𝑃 ∨ 𝑆 ) ) |
| 40 |
|
eqid |
⊢ ( ( 𝑅 ∨ 𝑡 ) ∧ ( 𝑃 ∨ 𝑆 ) ) = ( ( 𝑅 ∨ 𝑡 ) ∧ ( 𝑃 ∨ 𝑆 ) ) |
| 41 |
36 1 2 3 4 5 37 38 39 40
|
4atexlemex4 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( 𝑡 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝑄 ∨ 𝑡 ) ∧ ( 𝑃 ∨ 𝑆 ) ) = 𝑆 ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) |
| 42 |
36 1 2 3 4 5 37 38 39
|
4atexlemex2 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( 𝑡 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( ( 𝑄 ∨ 𝑡 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≠ 𝑆 ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) |
| 43 |
41 42
|
pm2.61dane |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( 𝑡 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) |
| 44 |
23 24 25 26 32 33 34 35 43
|
syl332anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) |
| 45 |
44
|
rexlimdv3a |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ∃ 𝑡 ∈ 𝐴 ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑡 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∨ 𝑡 ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) ) |
| 46 |
22 45
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) ∧ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) |