Metamath Proof Explorer


Theorem 4casesdan

Description: Deduction eliminating two antecedents from the four possible cases that result from their true/false combinations. (Contributed by NM, 19-Mar-2013)

Ref Expression
Hypotheses 4casesdan.1 φψχθ
4casesdan.2 φψ¬χθ
4casesdan.3 φ¬ψχθ
4casesdan.4 φ¬ψ¬χθ
Assertion 4casesdan φθ

Proof

Step Hyp Ref Expression
1 4casesdan.1 φψχθ
2 4casesdan.2 φψ¬χθ
3 4casesdan.3 φ¬ψχθ
4 4casesdan.4 φ¬ψ¬χθ
5 1 expcom ψχφθ
6 2 expcom ψ¬χφθ
7 3 expcom ¬ψχφθ
8 4 expcom ¬ψ¬χφθ
9 5 6 7 8 4cases φθ