Metamath Proof Explorer


Theorem 4onn

Description: The ordinal 4 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion 4onn 4𝑜ω

Proof

Step Hyp Ref Expression
1 df-4o 4𝑜=suc3𝑜
2 3onn 3𝑜ω
3 peano2 3𝑜ωsuc3𝑜ω
4 2 3 ax-mp suc3𝑜ω
5 1 4 eqeltri 4𝑜ω