Metamath Proof Explorer


Theorem 4onn

Description: The ordinal 4 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion 4onn 4o ∈ ω

Proof

Step Hyp Ref Expression
1 df-4o 4o = suc 3o
2 3onn 3o ∈ ω
3 peano2 ( 3o ∈ ω → suc 3o ∈ ω )
4 2 3 ax-mp suc 3o ∈ ω
5 1 4 eqeltri 4o ∈ ω