Metamath Proof Explorer
		
		
		
		Description:  6 is an even number.  (Contributed by AV, 20-Jul-2020)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | 6even |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 6nn |  | 
						
							| 2 | 1 | nnzi |  | 
						
							| 3 |  | 3t2e6 |  | 
						
							| 4 | 3 | eqcomi |  | 
						
							| 5 | 4 | oveq1i |  | 
						
							| 6 |  | 3cn |  | 
						
							| 7 |  | 2cn |  | 
						
							| 8 |  | 2ne0 |  | 
						
							| 9 | 6 7 8 | divcan4i |  | 
						
							| 10 | 5 9 | eqtri |  | 
						
							| 11 |  | 3z |  | 
						
							| 12 | 10 11 | eqeltri |  | 
						
							| 13 |  | iseven |  | 
						
							| 14 | 2 12 13 | mpbir2an |  |