Metamath Proof Explorer
Description: 6 is an even number. (Contributed by AV, 20-Jul-2020)
|
|
Ref |
Expression |
|
Assertion |
6even |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
6nn |
|
2 |
1
|
nnzi |
|
3 |
|
3t2e6 |
|
4 |
3
|
eqcomi |
|
5 |
4
|
oveq1i |
|
6 |
|
3cn |
|
7 |
|
2cn |
|
8 |
|
2ne0 |
|
9 |
6 7 8
|
divcan4i |
|
10 |
5 9
|
eqtri |
|
11 |
|
3z |
|
12 |
10 11
|
eqeltri |
|
13 |
|
iseven |
|
14 |
2 12 13
|
mpbir2an |
|