Metamath Proof Explorer
		
		
		
		Description:  7 is a prime number.  (Contributed by Mario Carneiro, 18-Feb-2014)
     (Revised by Mario Carneiro, 20-Apr-2015)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | 7prm |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 7nn |  | 
						
							| 2 |  | 1lt7 |  | 
						
							| 3 |  | 2nn |  | 
						
							| 4 |  | 3nn0 |  | 
						
							| 5 |  | 1nn |  | 
						
							| 6 |  | 3cn |  | 
						
							| 7 |  | 2cn |  | 
						
							| 8 |  | 3t2e6 |  | 
						
							| 9 | 6 7 8 | mulcomli |  | 
						
							| 10 | 9 | oveq1i |  | 
						
							| 11 |  | df-7 |  | 
						
							| 12 | 10 11 | eqtr4i |  | 
						
							| 13 |  | 1lt2 |  | 
						
							| 14 | 3 4 5 12 13 | ndvdsi |  | 
						
							| 15 |  | 3nn |  | 
						
							| 16 |  | 2nn0 |  | 
						
							| 17 | 8 | oveq1i |  | 
						
							| 18 | 17 11 | eqtr4i |  | 
						
							| 19 |  | 1lt3 |  | 
						
							| 20 | 15 16 5 18 19 | ndvdsi |  | 
						
							| 21 |  | 5nn0 |  | 
						
							| 22 |  | 7nn0 |  | 
						
							| 23 |  | 7lt10 |  | 
						
							| 24 | 3 21 22 23 | declti |  | 
						
							| 25 | 1 2 14 20 24 | prmlem1 |  |