Metamath Proof Explorer
Description: 8 is an even number. (Contributed by AV, 23-Jul-2020)
|
|
Ref |
Expression |
|
Assertion |
8even |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
8nn |
|
| 2 |
1
|
nnzi |
|
| 3 |
|
4t2e8 |
|
| 4 |
3
|
eqcomi |
|
| 5 |
4
|
oveq1i |
|
| 6 |
|
4cn |
|
| 7 |
|
2cn |
|
| 8 |
|
2ne0 |
|
| 9 |
6 7 8
|
divcan4i |
|
| 10 |
5 9
|
eqtri |
|
| 11 |
|
4z |
|
| 12 |
10 11
|
eqeltri |
|
| 13 |
|
iseven |
|
| 14 |
2 12 13
|
mpbir2an |
|