Metamath Proof Explorer


Theorem ab0ALT

Description: Alternate proof of ab0 , shorter but using more axioms. (Contributed by BJ, 19-Mar-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ab0ALT x|φ=x¬φ

Proof

Step Hyp Ref Expression
1 nfab1 _xx|φ
2 1 eq0f x|φ=x¬xx|φ
3 abid xx|φφ
4 3 notbii ¬xx|φ¬φ
5 4 albii x¬xx|φx¬φ
6 2 5 bitri x|φ=x¬φ