Metamath Proof Explorer


Theorem ablprop

Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 11-Oct-2013)

Ref Expression
Hypotheses ablprop.b BaseK=BaseL
ablprop.p +K=+L
Assertion ablprop KAbelLAbel

Proof

Step Hyp Ref Expression
1 ablprop.b BaseK=BaseL
2 ablprop.p +K=+L
3 eqidd BaseK=BaseK
4 1 a1i BaseK=BaseL
5 2 oveqi x+Ky=x+Ly
6 5 a1i xBaseKyBaseKx+Ky=x+Ly
7 3 4 6 ablpropd KAbelLAbel
8 7 mptru KAbelLAbel