Metamath Proof Explorer
Description: Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016)
|
|
Ref |
Expression |
|
Hypotheses |
abnotataxb.1 |
|
|
|
abnotataxb.2 |
|
|
Assertion |
abnotataxb |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abnotataxb.1 |
|
| 2 |
|
abnotataxb.2 |
|
| 3 |
2 1
|
pm3.2i |
|
| 4 |
3
|
olci |
|
| 5 |
|
xor |
|
| 6 |
4 5
|
mpbir |
|
| 7 |
|
df-xor |
|
| 8 |
6 7
|
mpbir |
|