Metamath Proof Explorer
		
		
		
		Description:  Assuming not a, b, there exists a proof a-xor-b.)  (Contributed by Jarvin Udandy, 31-Aug-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | abnotataxb.1 | ⊢ ¬  𝜑 | 
					
						|  |  | abnotataxb.2 | ⊢ 𝜓 | 
				
					|  | Assertion | abnotataxb | ⊢  ( 𝜑  ⊻  𝜓 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abnotataxb.1 | ⊢ ¬  𝜑 | 
						
							| 2 |  | abnotataxb.2 | ⊢ 𝜓 | 
						
							| 3 | 2 1 | pm3.2i | ⊢ ( 𝜓  ∧  ¬  𝜑 ) | 
						
							| 4 | 3 | olci | ⊢ ( ( 𝜑  ∧  ¬  𝜓 )  ∨  ( 𝜓  ∧  ¬  𝜑 ) ) | 
						
							| 5 |  | xor | ⊢ ( ¬  ( 𝜑  ↔  𝜓 )  ↔  ( ( 𝜑  ∧  ¬  𝜓 )  ∨  ( 𝜓  ∧  ¬  𝜑 ) ) ) | 
						
							| 6 | 4 5 | mpbir | ⊢ ¬  ( 𝜑  ↔  𝜓 ) | 
						
							| 7 |  | df-xor | ⊢ ( ( 𝜑  ⊻  𝜓 )  ↔  ¬  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 8 | 6 7 | mpbir | ⊢ ( 𝜑  ⊻  𝜓 ) |