Description: Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 28-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | conimpf.1 | ⊢ 𝜑 | |
| conimpf.2 | ⊢ ¬ 𝜓 | ||
| conimpf.3 | ⊢ ( 𝜑 → 𝜓 ) | ||
| Assertion | conimpf | ⊢ ( 𝜑 ↔ ⊥ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conimpf.1 | ⊢ 𝜑 | |
| 2 | conimpf.2 | ⊢ ¬ 𝜓 | |
| 3 | conimpf.3 | ⊢ ( 𝜑 → 𝜓 ) | |
| 4 | 3 2 | aibnbaif | ⊢ ( 𝜑 ↔ ⊥ ) |