Description: Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 28-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | conimpf.1 | |- ph |
|
| conimpf.2 | |- -. ps |
||
| conimpf.3 | |- ( ph -> ps ) |
||
| Assertion | conimpf | |- ( ph <-> F. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conimpf.1 | |- ph |
|
| 2 | conimpf.2 | |- -. ps |
|
| 3 | conimpf.3 | |- ( ph -> ps ) |
|
| 4 | 3 2 | aibnbaif | |- ( ph <-> F. ) |