Metamath Proof Explorer


Theorem abscld

Description: Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis abscld.1 φA
Assertion abscld φA

Proof

Step Hyp Ref Expression
1 abscld.1 φA
2 abscl AA
3 1 2 syl φA