Metamath Proof Explorer


Theorem absdivd

Description: Absolute value distributes over division. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses abscld.1 φA
abssubd.2 φB
absdivd.2 φB0
Assertion absdivd φAB=AB

Proof

Step Hyp Ref Expression
1 abscld.1 φA
2 abssubd.2 φB
3 absdivd.2 φB0
4 absdiv ABB0AB=AB
5 1 2 3 4 syl3anc φAB=AB