Metamath Proof Explorer


Theorem abshicom

Description: Commuted inner products have the same absolute values. (Contributed by NM, 26-May-2006) (New usage is discouraged.)

Ref Expression
Assertion abshicom ABAihB=BihA

Proof

Step Hyp Ref Expression
1 ax-his1 ABAihB=BihA
2 1 fveq2d ABAihB=BihA
3 hicl BABihA
4 3 ancoms ABBihA
5 4 abscjd ABBihA=BihA
6 2 5 eqtrd ABAihB=BihA