Metamath Proof Explorer


Theorem absimnre

Description: The absolute value of the imaginary part of a non-real, complex number, is strictly positive. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses absimnre.1 φA
absimnre.2 φ¬A
Assertion absimnre φA+

Proof

Step Hyp Ref Expression
1 absimnre.1 φA
2 absimnre.2 φ¬A
3 1 imcld φA
4 3 recnd φA
5 reim0b AAA=0
6 1 5 syl φAA=0
7 2 6 mtbid φ¬A=0
8 7 neqned φA0
9 4 8 absrpcld φA+