Metamath Proof Explorer


Theorem absnegd

Description: Absolute value of negative. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis abscld.1 φA
Assertion absnegd φA=A

Proof

Step Hyp Ref Expression
1 abscld.1 φA
2 absneg AA=A
3 1 2 syl φA=A