Metamath Proof Explorer


Theorem abssubd

Description: Swapping order of subtraction doesn't change the absolute value. Example of Apostol p. 363. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses abscld.1 φA
abssubd.2 φB
Assertion abssubd φAB=BA

Proof

Step Hyp Ref Expression
1 abscld.1 φA
2 abssubd.2 φB
3 abssub ABAB=BA
4 1 2 3 syl2anc φAB=BA