Metamath Proof Explorer


Theorem abstrid

Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of Gleason p. 133. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses abscld.1 φA
abssubd.2 φB
Assertion abstrid φA+BA+B

Proof

Step Hyp Ref Expression
1 abscld.1 φA
2 abssubd.2 φB
3 abstri ABA+BA+B
4 1 2 3 syl2anc φA+BA+B