Metamath Proof Explorer


Theorem abv

Description: The class of sets verifying a property is the universal class if and only if that property is a tautology. The reverse implication ( bj-abv ) requires fewer axioms. (Contributed by BJ, 19-Mar-2021) Avoid df-clel , ax-8 . (Revised by Gino Giotto, 30-Aug-2024) (Proof shortened by BJ, 30-Aug-2024)

Ref Expression
Assertion abv x|φ=Vxφ

Proof

Step Hyp Ref Expression
1 dfcleq x|φ=x|yyx|φyx|
2 vextru yx|
3 2 tbt yx|φyx|φyx|
4 df-clab yx|φyxφ
5 3 4 bitr3i yx|φyx|yxφ
6 5 albii yyx|φyx|yyxφ
7 1 6 bitri x|φ=x|yyxφ
8 dfv2 V=x|
9 8 eqeq2i x|φ=Vx|φ=x|
10 sb8v xφyyxφ
11 7 9 10 3bitr4i x|φ=Vxφ