Metamath Proof Explorer


Theorem abvcl

Description: An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a A=AbsValR
abvf.b B=BaseR
Assertion abvcl FAXBFX

Proof

Step Hyp Ref Expression
1 abvf.a A=AbsValR
2 abvf.b B=BaseR
3 1 2 abvf FAF:B
4 3 ffvelcdmda FAXBFX