Database BASIC ALGEBRAIC STRUCTURES Division rings and fields Absolute value (abstract algebra) abvtrivg  
				
		 
		
			
		 
		Description:   The trivial absolute value.  This theorem is not true for rings with
       zero divisors, which violate the multiplication axiom; abvdom  is the
       converse of this theorem.  (Contributed by SN , 25-Jun-2025) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						abvtriv.a   ⊢   A  =   AbsVal  ⁡  R        
					 
					
						abvtriv.b   ⊢   B  =  Base  R      
					 
					
						abvtriv.z   ⊢   0  ˙ =  0  R      
					 
					
						abvtriv.f   ⊢   F  =    x  ∈  B  ⟼   if   x  =  0  ˙    0    1            
					 
				
					Assertion 
					abvtrivg    ⊢   R  ∈  Domn    →   F  ∈  A         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							abvtriv.a  ⊢   A  =   AbsVal  ⁡  R        
						
							2 
								
							 
							abvtriv.b  ⊢   B  =  Base  R      
						
							3 
								
							 
							abvtriv.z  ⊢   0  ˙ =  0  R      
						
							4 
								
							 
							abvtriv.f  ⊢   F  =    x  ∈  B  ⟼   if   x  =  0  ˙    0    1            
						
							5 
								
							 
							eqid  ⊢   ⋅  R =  ⋅  R      
						
							6 
								
							 
							domnring   ⊢   R  ∈  Domn    →   R  ∈  Ring         
						
							7 
								2  5  3 
							 
							domnmuln0   ⊢    R  ∈  Domn    ∧    y  ∈  B    ∧   y  ≠  0  ˙    ∧    z  ∈  B    ∧   z  ≠  0  ˙     →   y  ⋅  R z ≠  0  ˙        
						
							8 
								1  2  3  4  5  6  7 
							 
							abvtrivd   ⊢   R  ∈  Domn    →   F  ∈  A