Metamath Proof Explorer


Theorem ac2

Description: Axiom of Choice equivalent. By using restricted quantifiers, we can express the Axiom of Choice with a single explicit conjunction. (If you want to figure it out, the rewritten equivalent ac3 is easier to understand.) Note: aceq0 shows the logical equivalence to ax-ac . (New usage is discouraged.) (Contributed by NM, 18-Jul-1996)

Ref Expression
Assertion ac2 y z x w z ∃! v z u y z u v u

Proof

Step Hyp Ref Expression
1 ax-ac y z w z w w x v u t u w w t u t t y u = v
2 aceq0 y z x w z ∃! v z u y z u v u y z w z w w x v u t u w w t u t t y u = v
3 1 2 mpbir y z x w z ∃! v z u y z u v u