Metamath Proof Explorer


Theorem aceq0

Description: Equivalence of two versions of the Axiom of Choice. The proof uses neither AC nor the Axiom of Regularity. The right-hand side is our original ax-ac . (Contributed by NM, 5-Apr-2004)

Ref Expression
Assertion aceq0 yzxwz∃!vzuyzuvuyzwzwwxvutuwwtuttyu=v

Proof

Step Hyp Ref Expression
1 aceq1 yzxwz∃!vzuyzuvuyzwzwwxxzxzwwxzxxyz=x
2 equequ2 v=xu=vu=x
3 2 bibi2d v=xtuwwtuttyu=vtuwwtuttyu=x
4 elequ2 t=xwtwx
5 4 anbi2d t=xuwwtuwwx
6 elequ2 t=xutux
7 elequ1 t=xtyxy
8 6 7 anbi12d t=xuttyuxxy
9 5 8 anbi12d t=xuwwtuttyuwwxuxxy
10 9 cbvexvw tuwwtuttyxuwwxuxxy
11 10 bibi1i tuwwtuttyu=xxuwwxuxxyu=x
12 3 11 bitrdi v=xtuwwtuttyu=vxuwwxuxxyu=x
13 12 albidv v=xutuwwtuttyu=vuxuwwxuxxyu=x
14 elequ1 u=zuwzw
15 14 anbi1d u=zuwwxzwwx
16 elequ1 u=zuxzx
17 16 anbi1d u=zuxxyzxxy
18 15 17 anbi12d u=zuwwxuxxyzwwxzxxy
19 18 exbidv u=zxuwwxuxxyxzwwxzxxy
20 equequ1 u=zu=xz=x
21 19 20 bibi12d u=zxuwwxuxxyu=xxzwwxzxxyz=x
22 21 cbvalvw uxuwwxuxxyu=xzxzwwxzxxyz=x
23 13 22 bitrdi v=xutuwwtuttyu=vzxzwwxzxxyz=x
24 23 cbvexvw vutuwwtuttyu=vxzxzwwxzxxyz=x
25 24 imbi2i zwwxvutuwwtuttyu=vzwwxxzxzwwxzxxyz=x
26 25 2albii zwzwwxvutuwwtuttyu=vzwzwwxxzxzwwxzxxyz=x
27 26 exbii yzwzwwxvutuwwtuttyu=vyzwzwwxxzxzwwxzxxyz=x
28 1 27 bitr4i yzxwz∃!vzuyzuvuyzwzwwxvutuwwtuttyu=v