Metamath Proof Explorer


Theorem ac6c5

Description: Equivalent of Axiom of Choice. B is a collection B ( x ) of nonempty sets. Remark after Theorem 10.46 of TakeutiZaring p. 98. (Contributed by Mario Carneiro, 22-Mar-2013)

Ref Expression
Hypotheses ac6c4.1 AV
ac6c4.2 BV
Assertion ac6c5 xABfxAfxB

Proof

Step Hyp Ref Expression
1 ac6c4.1 AV
2 ac6c4.2 BV
3 1 2 ac6c4 xABffFnAxAfxB
4 exsimpr ffFnAxAfxBfxAfxB
5 3 4 syl xABfxAfxB