Metamath Proof Explorer


Theorem ac6s4

Description: Generalization of the Axiom of Choice to proper classes. B is a collection B ( x ) of nonempty, possible proper classes. (Contributed by NM, 29-Sep-2006)

Ref Expression
Hypothesis ac6s4.1 AV
Assertion ac6s4 xABffFnAxAfxB

Proof

Step Hyp Ref Expression
1 ac6s4.1 AV
2 n0 ByyB
3 2 ralbii xABxAyyB
4 eleq1 y=fxyBfxB
5 1 4 ac6s2 xAyyBffFnAxAfxB
6 3 5 sylbi xABffFnAxAfxB