Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Eric Schmidt
ac8prim
Next ⟩
modelac8prim
Metamath Proof Explorer
Ascii
Unicode
Theorem
ac8prim
Description:
ac8
expanded into primitives.
(Contributed by
Eric Schmidt
, 19-Oct-2025)
Ref
Expression
Assertion
ac8prim
⊢
∀
z
z
∈
x
→
∃
w
w
∈
z
∧
∀
z
∀
w
z
∈
x
∧
w
∈
x
→
¬
z
=
w
→
∀
y
y
∈
z
→
¬
y
∈
w
→
∃
y
∀
z
z
∈
x
→
∃
w
∀
v
v
∈
z
∧
v
∈
y
↔
v
=
w
Proof
Step
Hyp
Ref
Expression
1
dfac5prim
⊢
CHOICE
↔
∀
x
∀
z
z
∈
x
→
∃
w
w
∈
z
∧
∀
z
∀
w
z
∈
x
∧
w
∈
x
→
¬
z
=
w
→
∀
y
y
∈
z
→
¬
y
∈
w
→
∃
y
∀
z
z
∈
x
→
∃
w
∀
v
v
∈
z
∧
v
∈
y
↔
v
=
w
2
1
axaci
⊢
∀
z
z
∈
x
→
∃
w
w
∈
z
∧
∀
z
∀
w
z
∈
x
∧
w
∈
x
→
¬
z
=
w
→
∀
y
y
∈
z
→
¬
y
∈
w
→
∃
y
∀
z
z
∈
x
→
∃
w
∀
v
v
∈
z
∧
v
∈
y
↔
v
=
w