Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
The Ackermann bijection
ackbij1lem4
Next ⟩
ackbij1lem5
Metamath Proof Explorer
Ascii
Unicode
Theorem
ackbij1lem4
Description:
Lemma for
ackbij2
.
(Contributed by
Stefan O'Rear
, 19-Nov-2014)
Ref
Expression
Assertion
ackbij1lem4
ω
ω
⊢
A
∈
ω
→
A
∈
𝒫
ω
∩
Fin
Proof
Step
Hyp
Ref
Expression
1
snelpwi
ω
ω
⊢
A
∈
ω
→
A
∈
𝒫
ω
2
snfi
⊢
A
∈
Fin
3
2
a1i
ω
⊢
A
∈
ω
→
A
∈
Fin
4
1
3
elind
ω
ω
⊢
A
∈
ω
→
A
∈
𝒫
ω
∩
Fin