Metamath Proof Explorer


Theorem acnrcl

Description: Reverse closure for the choice set predicate. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion acnrcl XAC_AAV

Proof

Step Hyp Ref Expression
1 ne0i Xx|AVf𝒫xAgyAgyfyx|AVf𝒫xAgyAgyfy
2 abn0 x|AVf𝒫xAgyAgyfyxAVf𝒫xAgyAgyfy
3 simpl AVf𝒫xAgyAgyfyAV
4 3 exlimiv xAVf𝒫xAgyAgyfyAV
5 2 4 sylbi x|AVf𝒫xAgyAgyfyAV
6 1 5 syl Xx|AVf𝒫xAgyAgyfyAV
7 df-acn AC_A=x|AVf𝒫xAgyAgyfy
8 6 7 eleq2s XAC_AAV