Metamath Proof Explorer


Definition df-acn

Description: Define a local and length-limited version of the axiom of choice. The definition of the predicate X e. AC_ A is that for all families of nonempty subsets of X indexed on A (i.e. functions A --> ~P X \ { (/) } ), there is a function which selects an element from each set in the family. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion df-acn AC_A=x|AVf𝒫xAgyAgyfy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 0 wacn classAC_A
2 vx setvarx
3 cvv classV
4 0 3 wcel wffAV
5 vf setvarf
6 2 cv setvarx
7 6 cpw class𝒫x
8 c0 class
9 8 csn class
10 7 9 cdif class𝒫x
11 cmap class𝑚
12 10 0 11 co class𝒫xA
13 vg setvarg
14 vy setvary
15 13 cv setvarg
16 14 cv setvary
17 16 15 cfv classgy
18 5 cv setvarf
19 16 18 cfv classfy
20 17 19 wcel wffgyfy
21 20 14 0 wral wffyAgyfy
22 21 13 wex wffgyAgyfy
23 22 5 12 wral wfff𝒫xAgyAgyfy
24 4 23 wa wffAVf𝒫xAgyAgyfy
25 24 2 cab classx|AVf𝒫xAgyAgyfy
26 1 25 wceq wffAC_A=x|AVf𝒫xAgyAgyfy