Metamath Proof Explorer


Theorem ad11antr

Description: Deduction adding 11 conjuncts to antecedent. (Contributed by Thierry Arnoux, 27-Sep-2025)

Ref Expression
Hypothesis ad11antr.1 φ ψ
Assertion ad11antr Could not format assertion : No typesetting found for |- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ ch ) /\ th ) /\ ta ) /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) /\ la ) /\ ka ) /\ nu ) -> ps ) with typecode |-

Proof

Step Hyp Ref Expression
1 ad11antr.1 φ ψ
2 1 adantr φ χ ψ
3 2 ad10antr Could not format ( ( ( ( ( ( ( ( ( ( ( ( ph /\ ch ) /\ th ) /\ ta ) /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) /\ la ) /\ ka ) /\ nu ) -> ps ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ ch ) /\ th ) /\ ta ) /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) /\ la ) /\ ka ) /\ nu ) -> ps ) with typecode |-