Metamath Proof Explorer


Theorem ad11antr

Description: Deduction adding 11 conjuncts to antecedent. (Contributed by Thierry Arnoux, 27-Sep-2025)

Ref Expression
Hypothesis ad11antr.1 ( 𝜑𝜓 )
Assertion ad11antr ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜂 ) ∧ 𝜁 ) ∧ 𝜎 ) ∧ 𝜌 ) ∧ 𝜇 ) ∧ 𝜆 ) ∧ 𝜅 ) ∧ 𝜈 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 ad11antr.1 ( 𝜑𝜓 )
2 1 adantr ( ( 𝜑𝜒 ) → 𝜓 )
3 2 ad10antr ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜂 ) ∧ 𝜁 ) ∧ 𝜎 ) ∧ 𝜌 ) ∧ 𝜇 ) ∧ 𝜆 ) ∧ 𝜅 ) ∧ 𝜈 ) → 𝜓 )