Metamath Proof Explorer


Theorem simp-12l

Description: Simplification of a conjunction. (Contributed by Thierry Arnoux, 5-Oct-2025)

Ref Expression
Assertion simp-12l ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜂 ) ∧ 𝜁 ) ∧ 𝜎 ) ∧ 𝜌 ) ∧ 𝜇 ) ∧ 𝜆 ) ∧ 𝜅 ) ∧ 𝜈 ) → 𝜑 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝜑𝜓 ) → 𝜑 )
2 1 ad11antr ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜂 ) ∧ 𝜁 ) ∧ 𝜎 ) ∧ 𝜌 ) ∧ 𝜇 ) ∧ 𝜆 ) ∧ 𝜅 ) ∧ 𝜈 ) → 𝜑 )