Description: Simplification of a conjunction. (Contributed by Thierry Arnoux, 5-Oct-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | simp-12r | ⊢ ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜂 ) ∧ 𝜁 ) ∧ 𝜎 ) ∧ 𝜌 ) ∧ 𝜇 ) ∧ 𝜆 ) ∧ 𝜅 ) ∧ 𝜈 ) → 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) | |
2 | 1 | ad11antr | ⊢ ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) ∧ 𝜂 ) ∧ 𝜁 ) ∧ 𝜎 ) ∧ 𝜌 ) ∧ 𝜇 ) ∧ 𝜆 ) ∧ 𝜅 ) ∧ 𝜈 ) → 𝜓 ) |