Metamath Proof Explorer


Theorem an52ds

Description: Inference exchanging the last antecedent with the second. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypothesis an52ds.1 ( ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) → 𝜂 )
Assertion an52ds ( ( ( ( ( 𝜑𝜏 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜓 ) → 𝜂 )

Proof

Step Hyp Ref Expression
1 an52ds.1 ( ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) → 𝜂 )
2 an32 ( ( ( 𝜑𝜓 ) ∧ 𝜏 ) ↔ ( ( 𝜑𝜏 ) ∧ 𝜓 ) )
3 2 anbi1i ( ( ( ( 𝜑𝜓 ) ∧ 𝜏 ) ∧ 𝜃 ) ↔ ( ( ( 𝜑𝜏 ) ∧ 𝜓 ) ∧ 𝜃 ) )
4 1 an42ds ( ( ( ( ( 𝜑𝜓 ) ∧ 𝜏 ) ∧ 𝜃 ) ∧ 𝜒 ) → 𝜂 )
5 3 4 sylanbr ( ( ( ( ( 𝜑𝜏 ) ∧ 𝜓 ) ∧ 𝜃 ) ∧ 𝜒 ) → 𝜂 )
6 5 an42ds ( ( ( ( ( 𝜑𝜏 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜓 ) → 𝜂 )