Description: Inference exchanging the last antecedent with the second. (Contributed by Thierry Arnoux, 3-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | an52ds.1 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) → 𝜂 ) | |
| Assertion | an52ds | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜏 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜓 ) → 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an52ds.1 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) → 𝜂 ) | |
| 2 | an32 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜏 ) ↔ ( ( 𝜑 ∧ 𝜏 ) ∧ 𝜓 ) ) | |
| 3 | 2 | anbi1i | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜏 ) ∧ 𝜃 ) ↔ ( ( ( 𝜑 ∧ 𝜏 ) ∧ 𝜓 ) ∧ 𝜃 ) ) |
| 4 | 1 | an42ds | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜏 ) ∧ 𝜃 ) ∧ 𝜒 ) → 𝜂 ) |
| 5 | 3 4 | sylanbr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜏 ) ∧ 𝜓 ) ∧ 𝜃 ) ∧ 𝜒 ) → 𝜂 ) |
| 6 | 5 | an42ds | ⊢ ( ( ( ( ( 𝜑 ∧ 𝜏 ) ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜓 ) → 𝜂 ) |