Description: Inference exchanging the last antecedent with the second one. See also an32s . (Contributed by Thierry Arnoux, 3-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | an42ds.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
| Assertion | an42ds | ⊢ ( ( ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜒 ) ∧ 𝜓 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an42ds.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
| 2 | an32 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜃 ) ↔ ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜓 ) ) | |
| 3 | 2 | anbi1i | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜃 ) ∧ 𝜒 ) ↔ ( ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜓 ) ∧ 𝜒 ) ) |
| 4 | an32 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜃 ) ∧ 𝜒 ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ) | |
| 5 | an32 | ⊢ ( ( ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜒 ) ∧ 𝜓 ) ) | |
| 6 | 3 4 5 | 3bitr3i | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ↔ ( ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜒 ) ∧ 𝜓 ) ) |
| 7 | 6 1 | sylbir | ⊢ ( ( ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜒 ) ∧ 𝜓 ) → 𝜏 ) |