Description: Inference exchanging the last antecedent with the second one. See also an32s . (Contributed by Thierry Arnoux, 3-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | an42ds.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
Assertion | an42ds | ⊢ ( ( ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜒 ) ∧ 𝜓 ) → 𝜏 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an42ds.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
2 | an32 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜃 ) ↔ ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜓 ) ) | |
3 | 2 | anbi1i | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜃 ) ∧ 𝜒 ) ↔ ( ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜓 ) ∧ 𝜒 ) ) |
4 | an32 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜃 ) ∧ 𝜒 ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ) | |
5 | an32 | ⊢ ( ( ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜒 ) ∧ 𝜓 ) ) | |
6 | 3 4 5 | 3bitr3i | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) ↔ ( ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜒 ) ∧ 𝜓 ) ) |
7 | 6 1 | sylbir | ⊢ ( ( ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜒 ) ∧ 𝜓 ) → 𝜏 ) |