Step |
Hyp |
Ref |
Expression |
1 |
|
an42ds.1 |
|- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta ) |
2 |
|
an32 |
|- ( ( ( ph /\ ps ) /\ th ) <-> ( ( ph /\ th ) /\ ps ) ) |
3 |
2
|
anbi1i |
|- ( ( ( ( ph /\ ps ) /\ th ) /\ ch ) <-> ( ( ( ph /\ th ) /\ ps ) /\ ch ) ) |
4 |
|
an32 |
|- ( ( ( ( ph /\ ps ) /\ th ) /\ ch ) <-> ( ( ( ph /\ ps ) /\ ch ) /\ th ) ) |
5 |
|
an32 |
|- ( ( ( ( ph /\ th ) /\ ps ) /\ ch ) <-> ( ( ( ph /\ th ) /\ ch ) /\ ps ) ) |
6 |
3 4 5
|
3bitr3i |
|- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) <-> ( ( ( ph /\ th ) /\ ch ) /\ ps ) ) |
7 |
6 1
|
sylbir |
|- ( ( ( ( ph /\ th ) /\ ch ) /\ ps ) -> ta ) |