Metamath Proof Explorer


Theorem an42ds

Description: Inference exchanging the last antecedent with the second one. See also an32s . (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypothesis an42ds.1 φ ψ χ θ τ
Assertion an42ds φ θ χ ψ τ

Proof

Step Hyp Ref Expression
1 an42ds.1 φ ψ χ θ τ
2 an32 φ ψ θ φ θ ψ
3 2 anbi1i φ ψ θ χ φ θ ψ χ
4 an32 φ ψ θ χ φ ψ χ θ
5 an32 φ θ ψ χ φ θ χ ψ
6 3 4 5 3bitr3i φ ψ χ θ φ θ χ ψ
7 6 1 sylbir φ θ χ ψ τ